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PREFACE TO FINAL REPORTS, PART H

The present report constitutes Part II of a three part research report that

deals with experimental and theoretical investigations of steady and unsteady wakes

and their influence on boundary layer transition. The experimental research was

performed in the recently established Turbomachinery Performance and Flow

Research Laboratory, a division of the Turbomachinery Laboratory of Texas A&M

University.

In this part, a theoretical framework has been developed that precisely

predicts the development and decay of steady and unsteady wake flows through

curved as weU as straight channels at positive, zero and negative pressure gradients.

To compare the theory with the experiment, the results of comprehensive

experimental investigations of steady and unsteady wake flows reported in Part I are

utilized.

Part III reports the effects of periodic unsteady wake flow and pressure

gradient on boundary layer transition along the concave surface of a curved plate.

The measurements were performed on an unsteady flow r:;search facility using a

rotating cascade of rods positioned upstream of the curved plate. Boundary layer

measurements using a hot-wire probe were analyzed by the ensemble-averaging

technique.

M. T. Schobeiri

College Station, Texas

March 1994
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ABSTRACT

The development of a wake flow downstream of a cylindrical rod within a

curved channel under turbomachinery flow conditions (streamline curvature, and

zero, positive and negative pressure gradients) has been investigated theoretically.

The theoretical framework is based on the equations of continuity and motion that

are transformed into an orthogonal curvilinear coordinate system. These equations

describing the wake phenomenon are solved for mean velocities, and Reynolds

normal and shear stresses. The theory also describes the straight wake as a special

case, for which the radius of curvature approaches infinity. To demonstrate its

general validity, the theory has been compared with experimental measurements

made available from the Turbomachinery Performance Laboratory at Texas A&M

University as well as from the current literature.
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1. INTRODUCTION

The turbulent wake flow constitutes a special case of free turbulent shear flow

with wide ranging applications in the fields of science and engineering. In

turbomachinery, the wakes shed by upstream blade rows considerably influence the

boundary layer development and the heat transfer characteristics of the blades

downstream of the wake. The wake flow at the entrance of the diffuser, initiated by an

obstruction in the flow field such as a blade or a strut, greatly affects the overall

performance of the diffuser, depending upon the wake development. If the pressure

gradient is sufficiently high, the wake flow could lead to stagnation-pressure variations

resulting in diffuser stall (Hill, 1963). The wake flow also considerably influences the

pressure distribution on airfoils and thus is of great practical interest, especially on wings

made of multi-element airfoils. Due to a significant impact on efficiency and

performance of turbomachines, the wake development associated with inherent

unsteadiness induced by mutual interaction between stator and rotor has naturally

attracted the interest of many researchers and resulted in an abundance of publications.

However, there is little literature concerning the theoretical framework for cylinder wake

characteristics under turbomachinery flow conditions, aside from cases dealing with

straight channel and no streamwise pressure gradient.

Under turbomachinery flow conditions, the wakes undergo massive distortion due

to the effects of streamline curvature of blades and pressure gradients. The curvature and

pressure gradient greatly influence the growth of wake width, maximum wake velocity

defect, mean velocities, and turbulent characteristics of wakes. Because of the significant

impact of curvature and pressure gradients on the wake development phenomenon, the

results of research on 2-dimensional turbulent wakes in straight channel under zero

streamwise pressure gradient are not readily applicable to turbomachinery flow situations.

The format of this document follows the ASME Journal of Turbomachinery.
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This situation has given rise to a need for investigating the wake characteristics under

turbomachinery flow conditions. The present investigation, under the supervision of Dr.

T. Schobeiri, provides a theoretical basis for better understanding of wake phenomenon

under the influence of streamline curvature and pressure gradients.



2. LITERATURE REVIEW

The study of 2-dimensional wakes dates back to the 1930"s, when the

phenomenon was fast investigated by Schlichting (1930), based on Prandtl's mixing

length hypothesis. Assuming that 1) the mixing length is proportional to the wake width,

and 2) velocity profiles are similar for larger downstream distances, and by making some

assumptions in agreement with the power laws for wake width and maximum wake

defect velocity, Schlichting derived expressions for the wake width and defect velocity

in a straight channel. The theoretical calculations have been compared with the

measurements done by Schlichting, in the wake behind a circular cylinder. There is

excellent agreement between the theory and experimental results.

Reichardt (1942) carried out both the experimental and theoretical study of the

wake .flow downstream of cylinder wakes and free jet flows. The measurements are in

agreement with theoretical predictions. The predictions of Reichardt match quite well

with the predictions of Schlichting. Reichardt (1962) also carried out the experimental

investigation on wakes behind bodies of revolution in order to test the similarity of

velocity profiles behind bodies of different shapes, and determined the downstream

location at which the onset of similarity occurred. It was concluded that velocity

distribution in a wake became independent of the shape of the body sufficiently far

downstream from the body, and that the downstream location at which similarity

occurred varied with the body.

Townsend (1947a) studied the turbulent wake behind a cylinder in a straight

square working section, and measured the mean velocity distribution, distribution of

streamwise (u), transverse (v) and spanwise (w) fluctuation components, as well as the

statistical distribution of turbulent velocity components. The measurements indicated a

rapid development and stabilization of a characteristic shape of distribution. The turbulent

intensities were found to be nearly equal, except at the center of the wake where v had
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higher intensity than u and w. This was explained on the qualitative grounds that the

turbulent intensity at the wake center came from the conversion of energy of mean flow

by diffusion from regions of shearing motion, and that this diffusion took place by

movement of small bodies of fluid in the y-direction. These movements in the y-direction

consequently resulted in faster transport of transverse fluctuations than the streamwise

or spanwise fluctuations. From the calculations of energy in both the mean flow and the

turbulent motion, Townsend concluded that complete dynamic similarity in the wake, ff

ever attained, occurs beyond 1000 cylinder diameters downstream where the ratio of

turbulent and mean flow energies approach a constant value.

Roshko (1953), in his note on the development of turbulent wakes from vortex

streets, studied wake development behind cylinders at Reynolds numbers (Re) ranging

from 40 to 100_. The Reynolds number range of periodic vortex shedding is divided

into two distinct sub ranges, 40-150 being the stable range where regular vortex streets

are formed with no development of turbulent motion, and 150-300 being the transition

range to the regime of turbulent motion called the irregular range, where turbulent

velocity fluctuations accompany periodic formation of vortices. Studying the velocity

fluctuations from the spectrum and statistical measurements, Roshko reported that in the

stable range, the vortices decay by viscous diffusion, while in the irregular range, the

diffusion is turbulent and the wake becomes fully turbulent in 40-50 cylinder diameters

downstream.

Eifler (1975) carried out both the theoretical and experimental study of cylinder

wake for a wide range of downstream locations and also for different diameters of

cylinders in a straight channel. He derived analytical expressions for the Reynolds shear

stress and the mean velocities by making use of the time-averaged continuity equation

and the momentum equation. From the definition of mean velocity in the x-direction and

from the continuity equation, Eifler obtained an expression for partial impulse, while

integration of the x-momentum equation resulted in an expression for the total impulse.

Shear stress is defined as the difference between the total impulse and partial impulse.
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Thetheoreticalpredictionsagreewith themeasurementsby Eifler for defectvelocityand

all Reynoldsstresses.

Fabris(1979)studiedthe far turbulentwake of a slightly heatedcylinderusing

a speciallydevelopedfour-wire probe. Full, nonlinear responseequationsfor all four

sensors,reflectingthe influenceof all threecomponentsof velocity andtemperature,are

solvedsimultaneouslyyielding instantaneousvaluesof thethreecomponentsof velocity

and temperatureat a given point. The streamwisefluctuating component,u, has a

maximum at the position of maximum mean shear, _U/Oy, where the turbulence

production is the highest. The conditional average of the lateral fluctuating component

is observed to have a shallow valley between two small peaks, in agreement with Eifler

(1975) and in contradiction to what has been reported by Townsend (1946), who reported

a single maximum at the wake center and values about two times higher than u 2, fiE.

Of all the three fluctuating components, the streamwise component has the highest peak,

since it absorbs energy d/rectly from the mean flow, while b"2, _72 are much lower, but

approaching the _-2 level at the center of the wake. At the wake edge, fluctuations in the

lateral direction are higher than the other directions, in agreement with Phillips' (1955)

theory for potential fluctuations. According to Phillips, outside a stationary 2D turbulent

flow region, the intensity of each of three components of induced potential fluctuations

decays as lateral distance to the "one-fourth" power. But in the intermittent region, lateral

fluctuations were not found to be equal to the sum of the streamwise and spanwise

fluctuations.

Hebbar (1986) carried out measurements for defect velocity and Reynolds stresses

of boundary layer development on a symmetric airfoil, subsequent merging of the

boundary layer into a wake, and the development of wake downstream of the trailing

edge, with the focus of study on the change over of wall turbulence to free turbulence.

A careful observation of the distributions of streamwise and lateral intensities reveal that

the characteristic peaks close to the center of the wake disappear beyond a downstream
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distance of 50 times the momentum thickness of the trailing edge, and so he predicted

that a value of 50 for the momentum thickness of the trailing edge as the limit beyond

which the wake structure changes from wall turbulence to free turbulence. He also

noticed initial overshoots in turbulent intensities and no tendency towards similarity in

wake characteristics over the range of experimental study.

Turbulent flow with streamline curvature finds many applications in the field of

turbomachinery, especially in knowing the heat and momentum transfer in boundary

layers noticeable on turbomachine blades. This has been systematically investigated by

Wattendorf (1935), Thomann (1968), and many others. Thomarm (1968), in his study of

streamline wall curvature on heat transfer in a turbulent boundary layer, showed a

considerable increase in heat transfer on a concave surface compared to that on a convex

surface.

Wattendorf (1935) in his study on the effect of curvature on fully developed

turbulent flow, carried out experiments in two different curved channels of different

curvatures. Strong influence of curvature on velocity distributions has been reported.

Rayleigh's (1916) stability criteria are considered valid, as evidenced by the calculations

of mixing length and exchange factor. According to Rayleigh's stability criterion,

instability and increased mixing at the outer walls of the curved channels, and stability

and decreased mixing at the inner walls occur in a flow along a curved path which has

been explained on a theoretical basis. If a fluid particle is displaced towards the outer

walls due to a disturbing force in radial direction, then the centrifugal force of the

displaced fluid element is greater than the centripetal pressure gradient. Since such a

motion is unstable, the fluid particle has a tendency to move further in the same

direction. Conversely, if the displacement is inward, the centrifugal force will be less

than the centripetal pressure gradient, and the fluid element will be forced further inward.

Similar observations have been reported by other researchers (Koyama, Savill, and

others). The near and far wake characteristics of a cascade of airfoils has been studied

both experimentally and analytically by Raj and Lakshminarayana (1973). From the
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experimentalstudyfor threedifferent incidenceangles,theyreportedwake asymmetry

andstrongdependenceof the decayof the wakedefecton the variationof wake edge

velocity, solidity, andincidence.Also presentedweresomesemi-theoreticalexpressions

for the wake profile, decayof the defectvelocity, turbulenceintensity, and Reynolds

stress.

Bradshaw,Muck and Hoffmann (1985),in their study on the sensitivityof the

boundarylayerto streamlinecurvature,observedthatconvex(stabilizing)curvaturetends

to attenuatethepre-existingturbulencewhile theconcave(destabilizing)curvatureresults

in thegenerationof Taylor-G0rtlervortices.Studyof this curvatureeffect on turbulent

wakeshasbeenundertakenby severalother researchers.

The study of the wake characteristicsby Ramjeeand Neelakandan(1989)

involved a rectangularcylinder wake in both the straightandcurvedchannels.The test

sectionwassuchthat a longitudinally curvedductwasattachedat theendof a straight

ductwith flow deflectedby90 degreesin a gradualmanner.Thesensitivityof wakeflow

to thecurvatureis quite evident from the pronouncedchangesbetweenthe straightand

curved wakesin the maximumdefectvelocity andReynoldsstressintensitiesnotedin

the downstreamside. Larger maximum defect velocity and asymmetryof the mean

velocity profile werequite evident in thecaseof a curvedduct.Thelateralfluctuations

are found to bemoresensitiveto curvaturethan thestreamwisefluctuations.Of all the

Reynoldsstresses,shearstressexhibitedpronouncedchangeswith downstreamdistance

being the most sensitiveto the streamlinecurvature.The convex curvaturehasbeen

found to exerta stabiliT.inginfluenceon shearstresswhile theconcavesurfacetendsto

attenuatethe shearstress,resulting in strongasymmetryin shearstressdistribution.

Koyama(1983)studiedthe stabilizing,destabilizing,andsecondaryflow effects

of thestreamwisecurvatureof acylinderwakein a curvedchannelin theabsenceof the

streamwisepressuregradient.When thewakegeneratingcylinderwaslocatednormal to

the streamlinecurvature (spanwise),Koyama observedasymmetryabout the wake

centerlinein themeanvelocity andturbulent intensity profiles, owing to the destabilizing
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effects on inner side of the wake and stabilizing effects on the outer side. In his

terminology of a curved shear flow, the motion of fluid particles is stabilized if

transverse velocity gradient is positive, and destabilized if transverse velocity gradient

is negative. However, the symmetry about the wake centerline is preserved when the

wake generating body is placed along the streamline curvature. In this case, the radial

pressure gradient produces a secondary flow, which draws fluid towards the center of the

curvature from a destabilized boundary layer on the outer wall toward a stabilized

boundary layer on the inner wall.

The sensitivity of the flow to the curvature and pressure gradient can best be

realized from the study by Schobeiri (1976), which involved viscous flows with low

Reynolds numbers in symmetric convex and concave channels. The investigation shows

that the flow separation through the symmetric channel with the convex wall is more

sensitive to an adverse pressure gradient than the flow through a channel with concave

walls. Other investigations by Schobeiri (1980, 1990b) in asymmetric channels also show

that the flow has a higher tendency to separate on the convex wall than on the concave

wall in the presence of adverse pressure gradient.

Hill, Schaub and Senoo (1963) investigated the effect of an adverse pressure

gradient on turbulent wakes, produced by obstructions in a flow field. Using a two

dimensional diffuser of variable divergence angles, they measured time-averaged,

transverse velocity and pressure distribution at five different axial locations with different

axial pressure distributions. They showed experimentally that if the pressure gradient was

sufficiently rapid, the wake size grew instead of decayed, leading to the stagnation flow

at the center portion of the diffuser. Employing momentum integral equations and an

eddy viscosity, which is uniform across the wake, they developed an expression for the

wake width and also a criterion for the limiting value of a pressure gradient to prevent

wake growth.

Gartshore (1967) performed the experimental investigation of the effect of adverse

pressure gradients on two dimensional turbulent wakes. The data measured for the mean
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velocity, longitudinal and lateral turbulence intensifies, and shear stress distributions have

been compared with Townsend's (1956a) data for small-deficit undistorted wake that

resulted in slightly lower levels of turbulence intensities and much less shear stress. The

pressure gradient in the straight channel was adjusted to get a constant ratio between the

maximum wake defect velocity, _71,_, and potential flow velocity, U, in order to study

the effect of increasing the ratio on turbulent intensities and shear stress distributions.

Though, in general, the effect of increasing the ratio is to lower the turbulent intensity

ratios, large discrepancies were observed between measured values and those of

Townsend's for the zero pressure gradient case.

Savill (1983) carried out the study of a cylinder wake that was deflected about

90 degrees by means of a back plate so that it was under the influence of both the

streamwise curvature and streamwise pressure gradients. The measured data for the mean

velocity and all Reynolds stress intensities indicated a strong effect due to the streamline

curvature. He concluded that the study of the flow was complex owing to the coexistence

of the stabilized and destabilized regions across the wake, and a strong interaction

between them.

The mild curvature, in the case of Nakayama (1987), is established by placing an

airfoil-like thin plate at a small angle to the free-stream direction while the qualitative

separation between the effects due to the curvature and pressure gradient is achieved by

placing the thin plate at both positive and negative angles to the free-stream direction.

Despite the presence of a mild pressure gradient and curvature, the measured data

indicate a strong sensitivity of turbulence quantifies, especially the Reynolds shear stress

values to the curvature and pressure gradient.

Unsteady wake flow has considerable impact on the aerodynamic and heat-

transfer performance of turbomachinery blades. The aerodynamic fluctuations due to the

passage of wakes shed from upstream blade rows greatly affect the heat transfer rate to

the blade surface, especially in cooled gas turbines.



10

Pfeil and Schr0der (1981) studied the wake decay downstream of a cylinder

moving transverse to the main flow. Based on the laws for decay processes behind

stationary cylinders, they developed a method for the computation of velocity

components of a 2-dimensional cylinder wake, as a function of space coordinates and

time. The results from their calculations are in agreement with their measurements,

performed in a low speed wind tunnel.

Doorly and Oldfield (1985) developed a technique for the simulation of wake-

passing in a turbine stage by using a rotating wake generator in front of a stationary

turbine cascade. Their study revealed that the wakes undergo massive distortion due to

high velocity gradients in the rotor blade passages, and there is also a very high rate of

transient heat transfer because of the production of a boundary layer patch on the suction

surface and subsequent sweeping along the blade surface.

O'Brien and Capp (1989) carried out an experimental study for the axial and

tangential components of velocity in an unsteady turbulent flow downstream of a rotating

spoked-wheel wake generator, with the focus of study on the wake response to Reynolds

and Strouhal numbers. Mean axial velocities were found to be independent of Reynolds

and bar-passing Strouhal numbers, while the tangential component has a stronger

dependence on bar-passing Strouhal numbers.
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3. OBJECTIVES

The objective of this research is to establish a theoretical framework for the

description of two-dimensional turbulent wake development phenomena. The present

theoretical framework is based on the fundamental concept developed by Schobeiri

(1990a) and Schobeiri et al. (1993). Except for some theoretical work in the case of a

straight channel in the absence of a streamwise pressure gradient, published by

Schlichting, Reichardt and Eifler, as reviewed in the previous chapter, there has been no

major attempt to explain the wake phenomenon in a curved channel under the influence

of zero, positive and negative pressure gradients from a theoretical point of view.

Using tensor analysis tools, the conservation laws of fluid mechanics, such as the

equation of continuity and motion, have been transformed into an orthogonal curvilinear

coordinate system. The wake structure described by these equations can then be solved

for the required wake characteristics, i.e. mean defect velocity, mean longitudinal and

lateral velocities, and Reynolds shear and normal stresses, under the influence of

streamline curvature and zero, positive and negative pressure gradients. Straight channel

wake flow is to be treated as a special case of curved channel wake flow for which the

radius of curvature approaches infinity. To show general validity of the theory, it has to

be verified with experimental measurements carried out at the Turbomachinery

Performance Laboratory at Texas A&M University, as well as appropriate selections

from literature.
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4. COORDINATE TRANSFORMATIONS

In order to transform the coordinate invariant conservation laws of fluid

mechanics into an orthogonal curvilinear coordinate system, it is necessary to build up

necessary transformation parameters such as covariant, contravariant base vectors, metric

coeffcients, and Christoffel symbols using tensor analysis tools. The derivation of these

parameters has been dealt with in this chapter, based on the concept laid out by Schobeiri

(1990).

In Fig. I,the radiusvectorfor the wake development is describedby:

F= (R+_)cos(e o- ) _ +(R+_ 2) sin(e 0- )

where _i is the curvilinear coordinate system and e o an arbitrary initial angle. The co-

and contravariant base vectors in _i directions are calculated from Eq. (4.1) as:

_f.= (_R__)sin(eo__)_. (R____)cos(eo___)_2 (4.2)

= BF= cos(Co__ _)_+ sin(Oo__)_ (4.3)

_1 = (R__)sin(0o__)_ _(&)coS(0o-__)E2 (4.4)

e2__ cos(eo___)_ + sin(eo___)_ (4.5)

The metric coefficients and Christoffel symbols are def'med as:

(4.6)

(4.7)
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a_
F_k = _k" g' -- c_-"_"" g' (4.8)

A direct relation between the covariant and contravariant base vectors exists. They are

related with each other through metric coefficients as shown below:

,_, = gU _ (4.9)

Using Eqs. (4.2-4.5), and the definitions from F-XlS.(4.6-4.8), the metric coefficients, as

well as the Christoffel symbols are obtained as:

go = ' g _j = (4.10)

0 0

/::/oF_ : 1 ' _ = 2 (4.11)
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5. TRANSFORMATION OF CONSERVATION LAWS

The focus of this chapter is on transformation of the equation of continuity and

motion into an orthogonal curvilinear coordinate system by making use of the

transformations derived in Chapter 4. The development of theory is based on the

assumptions that the free turbulent flow under investigation is both two dimensional and

incompressible. The molecular viscosity has been neglected in comparison to turbulent

eddy viscosity, as has been verified from the experimental investigations. The

conservation laws are first presented in coordinate invariant form and are then

transformed to a special orthogonal curvilinear coordinate system under investigation.

Starting with the law of conservation of mass, the equation of continuity in coordinate

invariant form is:

..L

V.V = 0 (5.1)

As stated earlier, the molecular viscosity can be neglected in comparison with the

turbulent eddy viscosity, so the equation of motion in coordinate invariant form is:

: _1 Ve
P

(5.2)

Combining Eqs. (5.1) and (5.2) results in an appropriate version •

V.(V V) = -_1 Vp
P

(5.3)

This version is particularly useful for comparing the order of magnitude of individual

terms and their contributions. For further treatment of the conservation laws, the velocity

vector is decomposed into a time averaged mean and a time dependent fluctuation, i.e.

--- .-, (5.4)
V =V +V
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Using the above decomposition and the corresponding index notation for the curvilinear

coordinate system, Eqs. (5.1)-(5.3) can be treated in a time averaged sense as discussed

below.

5.1. Equation of Continuity

Continuity equation, governing the conservation of mass, is quite useful in

deriving expressions for velocity components of the flow under investigation. Substituting

-_ _ _ = VJ _, and the decomposition of velocity vector from Eq. (5.4) into
V ---g -_,

the equation of continuity, and then time averaging the resulting equation gives rise to:

v_ = c¢_) (_7%)--o

The continuity equation in index notation can now be written as:

v._7--_7'4._7'4 _-0 (5.5)
,i

For further analytical treatment of the problem, contravariant velocity components in {_

direction are replaced with corresponding physical components which are defined as:

V'" = gvQ-'ff,V ' , V," = g_ V, (5.6)

Expanding the Eq. (5.5) over the indices results in:

r72 r71 _ _7_24._7_ _ _2_7 1 4.4- 4.4.. rl I 4. r"21 4. 1-"222 = 0
,1 ,2

Using the physical components, as deffmed in Eq. (5.6), and Christoffel symbols from Eq.

(4.11) yields:

Introducing [7 and V for time averaged physical components of V i results in:
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17=0

_--_ + --_ [(1+ )fi
= 0 (5.7)

Given one of the velocity components, the above equation is quite useful in obtaining

an expression for the other component of velocity.

5.2. Equation of Motion, Version 1

Using Eq. (5.4) in Eq. (5.2) and time averaging the resulting equation yields:

.v_ + _ .V_ = _1 v_;
9

From the continuity equation:

- (_7 -V.V =0, i.e.V. +_) =0

(5.8)

Multiplying the above equation with V

equation gives rise to:

_7(v._ + v(v.¢_ =o

on both sides and then averaging the resulting

(5.9)

Again from continuity:

v.v =V.v+V.9=o
(5.10)

The above equation on time averaging yields:

V._7= 0 (5.11)

Making use of Eq. (5.11) in Eq. (5.9) leads to:
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V(--_._ = 0 (5.12)

Now, adding Eq. (5.12) to Eq. (5.8) gives rise to:

V.VV ÷ V._ ÷ _ = -1_ V_
P

This can be rewritten in concise form as:

17.VI7 ÷ V.(_') = 1--- V/_ (5.13)
P

Introducing the index notation, the equation of motion can now be written as:

t_jl_ij ÷ _Tj_Tk_] = _1_ gO/S-j - [(17"_7;) ÷_ml_r _,,q * 17'_ TM 1-'j _ (5.14)
P

Using Christoffel symbols from Eq. (4.11), the above equation in _, _ directions can

be written as:

_ 3 ffr- 
_I_I÷ _2_÷ 2 ,_71_2 = _L( R )2 _I -(_'T) I -(V---'r_,2 R÷_-----_

_1_2 ÷_2_ (R+_2) _l_l = 1 R+_
,i 2 ' R+_

Introducing the physical components, as defined earlier in Eq. (5.6), and introducing

m

and V for the time averaged physical components of V_, and if2, b-2 and _ for the time

averaged physical components of the fluctuation impulse I7 '17j , the equation of motion

in _1 directionin final form is:

(5.15)
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Similarly in _2 direction:

R UV_ + W 2 - 1 /_2 - R (u-'_ - (_-2)_ _ 1
R +_2 ' ' R +_2 P R +_2 ' R +_

5.3. Equation of Motion, Version 2

The equation of continuity has been added to the equation of motion to obtain a

modified version of the equation of motion, as presented in Eq. (5.3). This version is

quite useful to carry out the order of magnitude of analysis of individual terms and their

contributions. Introducing Eq. (5.4) into Eq. (5.3) and then time averaging the whole

equation leads to second version of equation of motion in index notation:

_. [(_'_J).,,÷_'_J r., + v'v" r_,j =

9

Expanding over the indices, the second version of equation of motion in _, _2 directions

respectively is:

-_ -1 -2 -i 3 I71172 = _ 1 (_)2 t51 _(fir-f r)_-(_'_) 2- 3(v v h+(v v )_+ R+_2 _ff 2 ' ' ' R+_:

_72__(_71_7b' + (_7_7%+ y_ (_ )+ R+_--_

-_ t;_-(VW')_- (VrU)2- _-_-_(-__)

Introducing physical components def'med in Eq. (5.6) and using Christoffel symbols from

F_x/. (4.11), the final form of second version of the equation of motion in _1 direction is:
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_D

"u-_l "-" _2 -_
t )l-tuv)_ -_;-_

(5.17)

Similarly in _2 direction:

R '(/_)1 +(172).2- 1 -2 -2 1 - R -

(5.18)

Bringing terms with similar derivatives together in Eqs. (5.17) and (5.18):

R (p- + _2 + _'2)i+ (/_I_+ u-b')_+ _ (_ + u-_ = 0 (5.19)
R+_2 P ' R+_2

R (ff + U_ 1 + (p__ + ]_2 + _.-2)2 _ 1 (_2 _ _2 + if2 _ b-2)= 0 (5.20)

R+_2 , 13 R+_ 2

Eqs. (5.19) and (5.20) are of practical interest for estimating the order of

magnitude of individual terms. The longitudinal fluctuation velocity lul is considerably

smaller than the mean velocity U, as has been verified from experiments. The lateral

fluctuation velocity Ivl, however, has the same order of magnitude as the mean lateral

velocity V, while it is negligible compared to U. From this comparison it is evident that

the contributions of the fluctuation velocity momenta are negligibly small compared to

the contribution of the longitudinal mean velocity momentum _2. However, the above

mentioned contributions are not neglected in the present investigation.
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6. NONDIMENSIONAL PARAMETERS

Once the differential equations governing the problem under investigation are

known, the next task is to determine appropriate dimensionless parameters.

Nondimensionalization of wake characteristics is useful whenever a comparison is to be

done with the measurements carried out by others, as well as to check if similarity of

characteristics exists or not. Similarity of characteristics means that the characteristics

such as velocity profiles assume similar shapes when normalized by local velocity and

width. It will be evident from following discussion that the wake width, b, has been

chosen as the reference length scale in defining the dimensionless variable _, while the

maximum wake velocity defect, /_,,, has been chosen as the reference velocity scale to

normalize velocities and impulses.

6.1. Assumptions and Definitions

It has been assumed that from a def'mite distance downstream of the wake region,

the velocity and momentum defect profiles are similar. This assumption implies that for

arbitrarily located points on the wake center with longitudinal coordinate _x,

corresponding length scale b = b(_) on the lateral coordinate, _2 can be found to

generate a dimensionless variable:

shown in Fig. 2, is defined as :

a--v -a,
--2 --26 2 = u2 - u, withu, --2 v.

= _/b. Furthermore, the wake velocity defect,

(6.1)

Here, U represents the hypothetical velocity distribution, which is an extension of the

undisturbed wake-external velocity into the wake. In the vicinity of the wake center, the

potential velocity U can be approximated, the derivation of which follows from
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equationof motion for inviscid flow. Thus,neglectingturbulentquantifiesfor inviscid

flow andfor thecaseof zerostreamwisepressuregradient,the equationof motion in_l

direction can be written as:

R o__0U + ___06 + _ = 0 (6.2)

Further assuming that variations of U in _ direction are quite small in comparison to

the variations in _2 direction, and U= represents the potential flow velocity, the above

equation simplifies to:

- 0v v. 7
V " + = 0 (6.3)

Further simplification and separation into variables leads to:

OU=

Integrating and denoting the value of the velocity at the wake center, _2 = O, by U_o, in

order to evaluate the constant of integration, yields:

(6.4)

terms, the final expression for U=

Expanding the expression in parenthesis as a Taylor series and neglecting higher order

in the vicinity of wake center can be written as:

U= = Up, (1-_-._) (6.5)

Here, U@ is the hypothetical velocity at the wake center, _ = 0, thus U= is a function

of _ only. The similarity assumption stated earlier requires the dimensionless wake

velocity, as well as the momentum defect functions that are functions of _ only:
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i7

= e= (6.6)
U,. Uf.

The similarity assumption has been strongly confm'ned by comprehensive experimental

investigations that will be discussed later. In the above expressions, 1.71m, -2/./1".,represent

the maximum wake velocity and momentum defects at the wake center. A definition for

wake width foUows from the foUowing assumption. Setting

ha *-

fu, dr-n-= fO, d_ 2 " Olin b leads to the generation of an equation as:

-fO,,_ =._5,.b with y =

,#w

5,.b

m

= 2 F = 1.772

1 [.v_.__,,_=. _ : %
Thus, the definition of wake width turns out to be: b = _ _ U,m 'b

6.2. Derivation of Drag Coefficient, Curved Channel

Drag coefficient is representative of the momentum loss due to friction. Here, an

expression for the drag coefficient due to the wake generating body in a curved channel

is presented. This calculation enables one to establish a course for the product of

maximum wake velocity defect and wake width quite easily. Of course, this is dependent

upon the drag coefficient remaining constant within the channel for the case under
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investigation. For the case of zero streamwise pressure gradient, it has been found to be

constant from experimental investigations. The procedure for the derivation of drag

coefficient in a curved channel is as follows.

With reference to Fig. 3, the drag force exerted in x-direction on the walls by the

fluid for inviscid flow (outside the wake) is obtained by applying momentum balance to

the control volume as:

h h

(W_),_,,_c_ --- pV2h - pfV2cos0t dy + pl h - fp2cos0t dy
0 0

(6.7)

Here, Vi denotes the velocity at station i, Pi denotes the pressure at station i, h is the

height of the channel and ct is the inclination of the outward normal at station 2 to the

horizontal. Now, considering the drag force in the x-direction by taking the wake into

account gives:

h h

(W)w_, = p V2h - p f(U 2- u2) 2 coso_ dy + p, h - fp2cos(x dy
o 0

(6.8)

U2 denotes the mean velocity at station 2 that is assumed to be uniform across the

control volume, while u 2 represents the wake velocity defect at station 2. So, the drag

force due to the wake generating body, a cylinder in this case, can be obtained by

subtracting Eq. (6.7) from Eq. (6.8). Thus:

k

(W.)._ = (pV_h).._,- (pV2h),.w,c,,- pf[(u 2- u2)2- V2] cosot dy
0

h h

+t<p,h),,,,- h),,,,,j- t(fp dy),,,..,_ -(f.,, dy),,,w.,J costt (6.9)
0 0

Assuming that the static pressure distribution within the wake is similar to that in the

potential flow, which is true far downstream of the wake, and also that velocity at the

inlet of the control volume is same in both the cases, the above equation simplifies to:
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h

(w)o_=_-pf(u_÷u_-2u_u_-v_)coso_
0

(6.10)

Further assuming that the wake velocity defect is small in comparison with the potential

flow velocity, which implies V2 = U z, the drag force due to the cylinder in the x-

direction is:

h

(Wx)c_ = p f(2u 2 uz+ u_) cosa dy
0

(6.11)

Similarly, the drag force due to the cylinder in the y-direction can be written as:

h

(wpc,,=-p f(2v_ u2+u_)sin_ dy
0

(6.12)

If W denotes the magnitude of the total drag force due to the cylinder, the drag

coefficient is given by:

4U 2 u2 2u_

Cw = W 1 !( +P-.U_,,, d =7 " -'_£ U_ZT- ) dY

2

As assumed earlier, the wake velocity defect is quite small in comparison with the

potential flow velocity, the above expression further simplifies to:

h h

1 f4u2 u2 1 _4u2 u_ dy
Cw=.-_ j T---X,2 - dY =o U;_ -dJo U= 2

(6.13)

Introducing:

U 2
(1)2 =- and _ = y

u_ b

which follow from similarity assumption, Eq. (6.13) modifies to:
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4 b uz_ U_ "_

C. = -d U_ _ a _
d_

The above expression shows the relation between the drag coefficient and velocity

distribution inside the wake.

6.3. DerlvaUon of Drag Coefficient, Straight Channel

The procedure of deriving drag coefficient for straight channel is same as that for

curved channel. Applying mass balance to the control volume shown in the Fig. 4 gives:

B

2B U 1 = 2 liU2- u 2) dy
0

Here, U1, U2 represent mean velocities, assumed uniform, at inlet and exit of the control

volume, while u_ denotes wake velocity defect at the exit, and B represents half the

height of the test section. Rewriting the above equation:

B

1 fu (6.14)U l =U 2 -._ 2dY
0

Applying momentum balance to the same control volume results in the drag force as

follows:

St St S 2 .S_

(6.15)

Since vl= u,, v:- us- us and also ,/m_ = p(U_)h ay, am2 = p(u: u_)h ay Eq.

(6.15) modifies to:
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B B

- f. f.W = 2 pU2h B ÷ 2pl B -2 (U 2- u2)h dy - 2 2dY (6.16)
0 0

Now, applying energy balance for the region outside the wake yields:

1
Pl - P2 = _ P (U2-U_) (6.17)

Introducing Eqs. (6.14) and (6.17) into Eq. (6.16), and further simplifying, the resulting

equation leads to:

B B B

1(fu_dy)2-25u:dy+2U2fu:dy]ff:p[$
0 0 0

The drag coefficient is defined as: C w
2W

which implies:

B B 8

B__ fo(.._22 4 _(u2)2dy + 4 u�c., : .5 dy: - 7 ¢_- 2 aY
(6.18)

For rdd > 80, contribution from the first two terms of the above equation is very small

and thus Eq. (6.18) can be approximated as:

B

4c.,-- 7 dy
(6.19)

U 2
Introducing the dimensionless parameter _2 = _ and _ = y with b as a function of

U2m b

_1, but basing only on the assumption of similarity, Eq. (6.19) is modified as:

Cw : 4 b u2,,, "fq) d_
d U2 0

(6.20)
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7. WAKE CHARACTERISTICS WITHOUT PRESSURE GRADIENT

Deriving expressions for mean velocities, total impulse, partial impulse, Reynolds

shear stress, and longitudinal turbulent fluctuation impulse for the wake flow under the

sole influence of streamline curvature with no streamwise pressure gradient will be dealt

with in this chapter. This task is based on making use of the derived transformed

conservation laws and assumptions stated earlier in Chapter 5. This case of curved wake

flow with zero pressure gradient is benign from a theoretical perspective, as it leads to

simplified expressions for wake characteristics because of negligible contributions from

many terms that appear from analytical treatment of the problem. Finally, at the end of

this chapter, a summary of the expressions for wake characteristics in a straight channel

is given. The straight channel wake flow is a special case of wake flow under the

influence of streamline curvature in the sense that the radius of curvature approaches

kff'_ty.

7.1. Expression for Mean Lateral Velocity

Continuity equation dictating mass balance is used to obtain an expression for

mean lateral velocity. This is possible once the velocity distribution in the streamwise

direction is known. An expression for the mean velocity in longitudinal direction has

already been presented in Chapter 6, i.e. in Eq. (6.1). The continuity equation in an

orthogonal curvilinear coordinate system under investigation, as derived in Chapter 5, is:

o_U+
_9_'-'_" o3_""_[(1+ )V] = 0 (7.1)

Separating the variables and integrating the above equation:

+ _ _ 0f_- _2 c (7.2)(1 T) --- ÷

Making use of the nondimensional parameters defined in Chapter 6, the above equation



32

becomes:

The partial derivative 0tpt/O_] can be rewritten by the chain rule as:

Substituting Eq. (7.4) into Eq. (7.3) results in:

Adding and subtracting a term to Eq. (7.5), the above expression modifies to:

(1 + _i 17 r OUp° --_) d;
_-) = -Jb-._.-_ (1

tf , a51. ba; - ab<1+ + Ui=--_-_l

$91 _ + c

(7.3)

(7.4)

(7.5)

(7.6)

After some rearrangement of terms, Eq. (7.6) simplifies to:

_ d(Ul=b)., db dUt'* f(1--_-) d_(I 4" ) ---- fff)ld_ - 51m _)I _ -- -- b

d_, d_l d_ 1

+ c (7.7)

The development of maximum wake velocity defect, the wake width and especially their

product, UI= b, is dictated by governing streamwise pressure gradient. Comprehensive

experimental and theoretical investigations by Reichardt (1942), Eifler (1975) and

Schobeiri et al. (1993) indicate that for wake development downstream of a single

cylinder with negligible streamwise pressure gradient, the above mentioned product

remains constant. For positive and negative pressure gradients, however, a pronounced
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longitudinaldependencyof thisproducthasbeenobserved.Also for the presentcaseof

zerostreamwisepressuregradient,thevariationsof Uroin _1direction are quite small and

can be neglected. Since the mean lateral velocity is zero at the wake center, it implies

that the constant of integration in Eq. (7.7) becomes zero. Thus, the final form of

expression for mean lateral velocity is:

_= _ R db _x. (p_; (7.8)
R+_ d_

7.2. Expression for Nondimeasional Wake Velocity Defect

Assumption of similarity in wake velocity defect profiles implies that the velocity

defect profiles become similar in shape when normalized by local velocity and width.

Using the local length and velocity scales chosen in Chapter 6, the above assumption

leads to: uU-_ = f(_)=f(O.

It has been shown by authors like Reichardt, Eifler and others from experimental and

theoretical investigations, in a straight channel with zero streamwise pressure gradient,

that the velocity distribution inside the wake can be represented by Gaussian distribution.

Now, the task is to derive an expression for nondimensional wake velocity defect

function by employing the equation of motion in the streamwise direction with the

implementation of order of magnitude analysis carried out in Chapter 5:

R 5 at7 ag 5
R +_2 a_ a_2 R_'_2 _

Using the nondimensional parameters, from Chapter 6, in the above equation in addition

to the following relations:

og =_V,o
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leads to:

_R [Upo(1- )-J_] _U_ + V t, ] + 17= B('_)R=_ _ _ -_ R-:-_ -

Substituting for 17 from Eq. (7.8) gives rise to:

R Ue,(1 ____)¢)(U_=_,)
R+_b [- a_

R .db 5,m_{_l) _(Slm{Pl)

+E:_(E:)]+ s db- V_o
a_, R+_b(-_¢_u";q")-T +

(R +_b)2R (av_-'_db_m¢(p,)[_Upo(l_ ___) +5S,.¢p,] =_ _)(_)_

(7.9)

From the earlier stated assumption that the variation of /_= b is negligible for a zero

strearnwise pressure gradient case, the following rearrangement can be applied:

b 8(b)

a¢, a¢, O_,l

_= db

Using Eq. (7.4) in conjunction with the above relation, and also with the following

approximation:

O__cp__<1; (pl_:cpl, --_:--

Eq. (7.9) can be treated, term by term, to get an expression for the wake velocity defect.

The first term of F_.q. (7.9) gets modified as:

R+;b [- Upo(1 _ _ 4 =



35

Upo(l__b)(_:, ,8q):__ -- _ _ _Uxm db_R
h _ _

R+_b R 8; b d_, b d_,

R ::,.eb __) 8(_,)1
R+;b ( b :,) [U.o(I 8;

m,)] =

Similarly rearranging the second term in Eq. (7.9) gives rise to:

R db:,.
R+;b (-'d-_I - R

R+;b d_: t--if-

+8(::=m__)] =

b

V_,o b ;¢o, + g,,. 8qJ,]

Similarly, the third term of Eq. (7.9) modifies to:

(R+;b)2R (__ g,_ _,)[- U,o(1-___)÷ g:. _,1 --

R db 5:m
Up,(1-_.._-_b)/¢ b ;_, + /.71,. b ;(p:,]( )[-

(R+_b)_ d_,,b

Assuming that, _ = f_(_,) f2(t0,) . where

l ung, m db " 3
f'(_') = : -_' f2(fO') = 2

R 8(p_

R+;b 8t
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the fourth term in the Eq. (7.9) modifies to:

8(_') =_ 8 1 /._, db R 8tPl] =

82cpl b 8tPl.

-_ a_, 8;2 R% _ J

Bringing all portions together and neglecting non linear terms in tp_, Eq. (7.9) takes the

form"

.__ 8(;(p,) u,. b ;_,Uj,o(1- ) 8; +'-R-

1 b2q)1 b 8q_1 ]
-3 u,. r_ - R*;b _;

_ 1 [Upo(l__b)b__ff _[p,] =
R+_

Simplifying and rewriting:

b l+b2_

82tpt___+ _Sq)' [_ "_'1+;_ + 2; (l-b;)] +2q)1 [ ;__]_+;_ =0

8tp t _2q) 1 .

Setting: _=x, q)t=Y; 8"( = y'' 8_"-''3" = y

(7.10)

transforms Eq. (7.10) to the following ordinary differential equation:

b 1 +b___2
R 2

R ] +2y[ +--_ ]=0
y" +y/ [2x (1-Rb---x) - (a+Rb_.x) I R

(7.11)

The above second order ordinary differential equation has been solved numerically using

the Runge-Kutta fourth order scheme. The results for different locations downstream of
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the wakegeneratingbody areshown,by symbols,in Fig. 5.

For the case of a straight channel, which implies R---> **, the above differential

equation in terms of cp, becomes:

(_Cp,)= - I _2CP,

_cpx

Integrationwith respectto _ gives _ = -2 _q):.

Using the method of separationof variablesand again integratingresultsin (p,= e "_

The constantof integrationisevaluatedfrom theconditionthatat _ = 0, _, = I,

which gives riseto:

¢p: = e -_ (7.12)

In Fig. 5, the legend theory denotes the result of implementation of the above expression.

Thus, it is obvious that Eq. (7.12) is valid within the curved channel also. It has been

verified from experimental investigations that curvature and pressure gradient have little

effect on this nondimensional wake velocity defect distribution and thus the validity of

the expression in Eq. (7.12) in all the cases is established.

7.3. Expression for Partial Impulse

Partial impulse is simply the product of time-averaged mean velocities in

streamwise and lateral directions. Since expressions for both these mean velocities have

already been established, expression for partial impulse is obtained by taking the product

of those two expressions. Therefore using Eqs. (6.1) and (7.8), the expression for the

partial impulse can be written as:

R%
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With the approximation from Eq. (6.5), i.e. U -- Upo (1-_R_), the above expression

modifies to:

-- R vjT,. db __ 62 2dbuv --R_---St- _ (1-);to, + ,.to,-_, ;1

Nondimensionalizing the above equation with square of the maximum wake velocity

defect, the f'mal expression for the partial impulse can be written as:

= _ R db Up° (1--_-) ;tO, + R db _to2

lm

(7.13)

7.4. Expression for Total Impulse

Expression for total impulse is obtained by utilizing the transformed equation of

motion in _ direction as follows. Using Eq. (5.16) with usual approximations already

stated yields:

R (/j2+u2). ' + (U_ 2
R+_ 2

Let g : U - g l

2 1 R Off
+ _ (U_ = - (7.14)

R+_ p R+_ a_,

U2 U2.. t.7: where U: 2 U U_ -2

For the present case of zero streamwise pressure gradient, the term on right hand side

of Eq. (7.14) vanishes. Assuming that the longitudinal turbulent fluctuation impulse is

negligible in comparison with the mean momentum in streamwise direction of the flow

and also that the fluctuations of the potential flow velocity in _, direction are very small

in comparison to those in
_2 direction, i.e. 8_ c "b'_'_'

_'2 < _2, Eq. (7.14)
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simplifies to:

-- -- 2 --R __(wO

This can be rewritten by some rearrangement of the terms as:

Assuming that UV , _ [(1 + ) U7¢]
R 8g 2

and integrating the resulting equation leads to:

(7.15)

Now consider further treatment of the above equation by considering the term within the

integration symbol, i.e.

--2 i_ 2 mO (_2) b 0 -2 _2 = 2 U UI,. - Ul,_ tp1__ = __ (Ufm q_2) b, where ,,.

The nondimensional wake velocity (denoted by Phit in legend table) and momentum

defect (denoted by Phi 2 in legend table) distributions were found to be almost equal, i.e.

_2 . q_, as shown in Fig. 6(a) for the zero pressure gradient case. This fact has been

implemented in the following analytical treatment. This is also true for positive (Fig.

6(b)) and negative pressure gradient cases.

(7.16)

Expanding 8_/8_ by chain rule and adding and subtracting a term, F-Xl.(7.16) modifies

to:
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2

a a ,. +52 ab _52 ab (7.17)

Adding terms with similar derivatives and making using of earlier specified

approximations, Eq. (7.17) reduces to:

a(2<5,.b - tT:.b)
- db 3 ¢2

3 (/._,=) b = (-2 U U,= + U_2,.) d_ 1 3; (;¢2) +3¢---7 3_,

_. db .'_2 d.b. _(;¢1) 2 <,.b (1---_)¢ 1 3Up°
3 --2

-_,--(ui)b = t-2 <

..2 u ¢i_-_(51.b)- 3 .52b.- ffJl"_ll, 1,,, )

Assuming that constant impulse requires /7,. b to be constant, 3Up/3_ = 0 for a zero

pressure gradient case, implementing these approximations in the above expression, and

integrating the resulting expression leads to:

3 (07)b 3; = -2U, o {Yl,.

Ut,,-2_3b :__._ (_0,) 3_ + c

Evaluation of integrals results in:

-2 db

+ Utm _ ;¢1 + C (7.18)

Final expression for the total impulse then is:

___ db b_ 1 -2 db
)u-v(1+ ---- + -- 4" UI m ;¢1 + C(I+2_2)]

Nondimensionalizing the above equationwith the square of the maximum wake velocity
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defect, /72 gives:
lm

LW R _ db bePl R db + c (7.19)

7.5. Expression for Reynolds Shear Stress

Shear stress is the difference between total impulse and partial impulse. This is

one of the wake characteristics that is of great importance, which is evident from the

order of magnitude analysis done in Chapter 5. Also, of all turbulent fluctuation

impulses, shear stress contributes most to the transfer of the mean momentum of the

flow. Expression for nondimensional Reynolds shear stress can be written from

u"_ UV UV
=_ -_as:

-2
Ulm lm lm

= RT{2 U_., _ [- ;¢p_ + (1 +;2)] R.T{ 2 _ ;¢p_ (1--_,) + --'T
UI,. Ulm

(7.20)

The constant, which is a function of _, is evaluated from the experimental results at _ =

0. For the case of straight channel, it is evident from the experimental results that the

constant is zero, since the normalized shear stress is zero at the wake center. But for the

case of a curved channel, the value of normalized shear stress is different from zero at

the wake center, which could be due to the influence of curvature.

7.6. Expression for Mean Longitudinal Turbulent Fluctuation Impulse

Though the contribution from the longitudinal turbulent fluctuation impulse is

negligibly small in comparison to the mean momentum in longitudinal direction, a

method for predicting its distribution has been presented basing on Prandfl's hypothesis.
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The value of longitudinal turbulent fluctuation impulse at the wake center has been used

as a nondimensionalizing variable here in this study.

From Prandtl's theory: _-.._ --f(_) qh
Um

Assuming f(_) to be a polynomial of second degree and also considering the effect of

curvature, the above equation can now be written as:

if2 R (ao+al_ +a2_ 2) q)x (7.21)
V = _--_- = R"_2

Us

The three constants can be evaluated from the conditions described below. The condition

1 gives rise to ao = 1. The second condition is (-_--_)g.o = 0, which implies thatWg o
de,

b The constant, a2, needs to be evaluated from experimental measurements. Thus,
a 1 =_-.

the final expression for the longitudinal turbulent fluctuations can be written as:

if2 = R (l+b_+a2_2) q_l (7.22)
--2 R .i._2Um

7.7. Special Case: Expressions of Wake Characteristics for Straight Channel

The straight channel wake flow has been treated by theory as a special case of

curved channel wake flow for which the radius of curvature approaches infinity. Thus,

making R --> ** in the above derived expressions for curved channels give rise to the

wake characteristics for a straight channel Since it is known from experimental

measurements that shear stress is zero at the wake center with symmetric distribution

about the wake center, the integration constant in shear stress expression becomes zero.

The summary of the resulting expressions is given below:
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Mean lateralvelocity:

_7 db
= - _(Pl

-b'-d,m
(7.23)

Partial impulse:

fflV _ db db

UI,. - _ Ul m

Total impulse:

U-V -2 Upo db db

U1 m-----_ UI m _ d_t

Shear stress:

_-.--r- _ ;_1 ÷ ;%Ulm - - Ulm _ (1-(:pl)

Longitudinal turbulent fluctuation impulse:

_'2
= (1 + a2_ 2) q)l

--2
Um

(7.24)

(7.25)

(7.26)

(7.27)
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8. WAKE CHARACTERISTICS WITH PRESSURE GRADIENT

The wake flow under the influence of streamline curvature and pressure gradients

is of considerable interest from a turbomachinery viewpoint since it simulates the real

situation in turbomachinery rotor cascade. No matter whether the pressure gradient is

positive or negative, the expressions developed for wake characteristics remain the same

except that the power laws dictating the growth of the wake width, decay of maximum

wake velocity defect and variation of potential flow velocity at wake center with the

streamwise distance vary in the two cases. It is evident from experiments that growth of

wake width is highest in a positive pressure gradient case, while the decay of maximum

wake velocity defect is fastest in a negative pressure gradient case. The task of deriving

expressions for wake characteristics with streamline curvature and longitudinal pressure

gradient has been undertaken in this chapter.

8.1. Expression for Mean Lateral Velocity

As done in the case of zero streamwise pressure gradient, the continuity equation

with given mean velocity distribution in streamwise direction has been used to derive

expression for mean lateral velocity. Rewriting the continuity equation, i.e. Eq. (5.7)

gives rise to:

(1+.__._) _ =_ (8.1)

Using the nondimensional parameters, from Chapter 6, and from the definition of mean

longitudinal velocity, it follows from Eq. (8.1) that:

V = + J c3 ,

Using the approximation

(8.2)

U = U_, (1--_), already derived in Chapter 6, the above
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equationmodifiesto:

_f0V,o _2 b 0;(1÷) 17 = .)--_-_ (l---if) +

Adding and subtracting the term,

f_U-_-l= q91 b O_ + fUl,,, O_l
_1 -_-1 b0; ÷c

0b 0¢Pt

fUl. _ ¢Pl 0;, and expanding _ by chain rule,

the above equation modifies to:

(1+__)17= f OUp° (1--_)b0_- -_-_,
+ 0 -

Evaluating the integrals leads to:

af,. &- R 0,_R b erf(;) -
+ R+_-----_ a_l 2 R+_2

From the condition that 17 is zero at _ = 0, the constant of integration evaluates to be

equal to zero. Nondimensionalizing with maximum wake velocity defect, tfx, ., the final

expression for mean lateral velocity can be written as:

UI-_ 2 U1-_ _l _ (1-- ;) + ( ) _'_1 l-_(_)l T e/f(;)]

otto.6- e_;) (8.3)
_% b-=+ (

)(Jim _l 2

Unlike the zero pressure gradient case, the present expression for mean lateral velocity

has additional terms involving the longitudinal dependency of maximum wake velocity

defect and potential flow velocity variations at the wake center which are not negligible

in the case of flow under the influence of streamwise pressure gradient.
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8.2. Expression for Partial Impulse

Since partial impulse is the product of the mean velocities in longitudinal and

lateral directions, the expression for it is written by using the expression for V, Eq. (8.3)

derived from the continuity equation, and from the definition of/.7 as:

db

+[71m d_, 2 3g, 2

With the approximation U

(8.4)

--2= Up, (1- ) and nondimensionalizing Eq. (8.4) with U1,.

leads to the f'mal expression for partial impulse as:

[,'17 . R ,Up° _U,o _3b_+b2; 2) R db
+(Rk-T_. )_-a_, [;q)]- -- erf(;)¢p_]

U1. Ul.

A _ b,,2 V/_"erf(_)(l_ A b 3Up_.._.fl_b..b__)
Vim Ulm _1" 2R

Up, b er)_;) (1 __b 0_. a
+( ).'755-

(8.5)

8.3. Expression for Total Impulse

The derivation for total impulse has been carried out by using the equation of

motion in _ direction with the usual approximations, as stated in earlier chapters:

(A)(/'72+ff2)a "(:V)2 "2' R_UTv' =-(A ) lp _9_1_/7
(8.6)
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Consideringthe potential flow outside the wake and applying Bemoulli's equation in that

region, enables one to arrive at a relation between the pressure gradient term and

potential flow velocity as follows:

1 3,_ =-u _au (8.7)

Assuming that the longitudinal turbulent fluctuation impulse is negligible in comparison

with the mean velocity of the flow and with the usual def'mitions, i.e.

a-- v -o,
--2 -- --2

Eq. (8.7) can be simplified as:

Assuming that UV a 1 + _2 -_: _=._[( _._ )UV], and integrating the resulting equation leads to:
R % R

(8.8)

Now, each term on the right hand side of above equation has been treated separately.

Evaluation of fn'st term leads to:

a_,,_ t,--R- -_-_)
(8.9)

Now, considering the second term, let:

2 --2 --2 01 m --2 to2= = - U,= and "Ut, . tO, where UT,. 2 U %
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The approximate equality of nondimensional wake velocity and momentum defect

functions has already been verified, as shown in Fig. 6(b) where the comparison is done

for a positive pressure gradient case. The equality of tp2 and % is also valid for negative

pressure gradient case. Making use of the fact modifies second term of Eq. (8.8) to:

Adding and subtracting a term and some rearrangement gives rise to:

(U_) b d_ = -2 f( d_ + d_1 --_-)_(_p,) 1. (_)1)

r.7, fq,,d; - 2 r.7,.b fl, d;+2 U,or.7,m_ f(1- )_,a;- ,,,-_(

_ _U,,o
+ 2 u.° a_, b a; 2 b f(1-b;) _, a;

Subsequent evaluation of the integrals, substitution into Eq. (8.8) and then

nondimensionalizing with U2m results in the final expression for total impulse as:

-"'T -2 d_, b ; [1- j + ( ) [;q)l-- err(;)]

er_;)] +(_)_ 2 _/'_- erf(;)
_(R÷)R /._,,___ K % Utm d_, 2

• (A) [2 _- er](_)-btp,] [Up° d/_,,, b dd___lto] c2 .-.--T d_ 1 b + + (8.10)
Ut,,, UI,,, Ul,,,
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8.4. Expression for Reynolds Shear Stress

As stated earlier in Chapter 7, shear stress is the difference of total impulse and

partial impulse and therefore the expression for shear stress follows from the relation:

u7
--2 _2 02

Making use of the Eqs. (8.5) and (8.10), the final form of Reynolds shear stress is:

lm 2 Ulm

- (&) U-_ _0,,. [T.__._erf(;){t_, (2-tpx)]

U,., _ [;cp, - @,(2+; 2) - _2 erf(;) (1

db _ erf(;)l+ ( ) _ [;@1 - _ (1-@x)

U-a2,, {tg, t21p I _ err(;) (1

+(&) b aUpo f.__.._ b ;2 cU,-"_ oq_, [2 err(;)+ ._.@I(I+T)-;_DI] + i['7_ (8.11)
lm

The constant of integration is a function of _ and should be evaluated from

experimental results, from the value corresponding to ; = 0. Unlike a straight channel

wake flow case, in curved channels, shear stress is not zero at the wake center because

of the effect of curvature. This fact is implemented into theory by evaluating the constant

of integration in above expression from experimental results at wake center.
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9. DISCUSSION OF RESULTS

General validationof thetheoryhas been accomplished by a comparison of theory

with experimental measurements made available from the Turbomachinery Performance

Laboratory (refer to Fig. 7 for the layout of the test facility) at Texas A&M University,

as well as from the literature. In order to carry out the comparison of theory with

experimental measurements, information regarding the wake width, maximum wake

velocity defect, and the hypothetical potential flow velocity at the wake center as a

function of streamwise distance, i.e. f(_l/d), is necessary. The value of shear stress at the

wake center for different locations downstream of the wake generating body is also

necessary to evaluate the constant of integration in the expression for Reynolds shear

stress. Information regarding these parameters that was provided from experiments and

that was actually implemented in theory, after curve fitting, is presented in Figs. 8

through 13. In all figures, the legend title is denoted with rdd followed by a numerical

value corresponding to the streamwise location. Here it should be noted that 'x' in the

legend title does not represent the cartesian coordinate, but it corresponds to curvilinear

coordinate _1" Thus rdd actually stands for _/d. In Fig. 14, the distribution of

(U_mb)/(Upod) for different streamwise locations for all the three streamwise pressure

gradients, zero (zpr), positive (ppr), and negative (npr), in the curved channel is

presented.

The test facility at Texas A&M University has been developed, as described by

Schobeiri (1987, 1992), to systematically investigate the influence of unsteady inlet flow,

pressure gradient, and curvature on boundary layer development, wake development, and

heat transfer. This test facility is capable of simulating periodic unsteady flow at the inlet

of a curved section, where zero, positive and negative pressure gradients can be easily

established by horizontally sliding the concave wall of the test section. The minimum and

maximum obtainable inlet:exit area ratios of the test section are 1:0.7 and 1:1.3,
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Fig. 7 Test section (l-exit duct, 2-convex wall, 3-concave wall, 4-probe, 5-wake generator, 6-motor, 7-top wall, 8-safety pin,
9-wall with vernier, lO-traversing system, 11-stepped motor, 12-locking wheel)
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respectively. For the special case of straight wake under no streamwise pressure gradient,

theory has been compared with experimental measurements carried out by Eifler (1975).

9.1. Zero Pressure Gradient, Straight Channel

Eifler (1975) carried out an experimental study of cylinder wake characteristics

for a wide range of downstream locations, and also for different diameters of cylinders

in a straight channel. Figures 15-21 show the comparison between theory and experiment

for different wake characteristics.

Figures 15-17 demonstrate excellent agreement between theory and experiment

for nondimensional wake velocity defect function, tp_ = e , for all locations

downstream of wake generating body and for all cylinder diameters. A comparison of

Reynolds shear stress is shown in Figs. 18 and 19. Theory is in excellent agreement with

experimental measurements, with the peak stress being predicted quite well. Figures 20

and 21 show the development of nondimensional longitudinal turbulent fluctuation

impulse for different streamwise locations, and also for different diameters of wake

generating body. The constant a2 in Eq. (7.27) is calculated to be 2.668. Except for a

slight overprediction of peaks in Fig. 20(a), the theory holds good for remainder of the

two cases. The deviation evident in Fig. 20(a) could be a result of calculating one of the

constants in Eq. (7.27) from experimental data at a specific streamwise location.

From an overall perspective, theory provides excellent predictions for the special

case of straight channel wake flow with no streamwise pressure gradient.

9.2. Zero Pressure Gradient, Curved Channel

Comparison of theory and experiment for a curved channel in the absence of

streamwise pressure gradient has been summarized in Figs. 22-31. As seen in the straight

channel case, the nondimensional wake velocity defect function perfectly matches the

experimental measurements (Figs. 22 and 23). Mean longitudinal velocity profiles
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(Figs. 24 and 25) show reasonable agreement between theory and measurements, except

for a slight deviation at the edges for higher x/d. The theory slightly under-predicted the

mean latera/ velocity (Figs. 26 and 27) distribution, which could be a result of the

assumption that there is absolutely no streamwise pressure gradient inside the channel.

In fact, experimental investigations show a mild favorable pressure gradient in the

channel, so in that case, this deviation is justifiable. Comparison of Reynolds shear stress

distribution for different locations downstream of the wake generating body is shown in

Figs. 28 and 29. The values of the constant of integration in the expression have been

evaluated from experiments and are presented in Table 1 (Appendix). As discussed

earlier, this constant is a function of the longitudinal coordinate _1" Except for a slight

deviation at the edges, the peaks have been predicted quiet well, demonstrating

asymmetry in shear stress distributions for all streamwise locations. Dimensionless

longitudinal turbulent fluctuation impulse is presented in Figs. 30 and 31. This wake

characteristic has been presented just to illustrate how it fits into a semi-theoretical

framework. The value calculated for constant a2 in Eq. (7.22) is 1.5. Thus, there is good

agreement between theory and measurement up to an x/d of 218. The deviation beyond

this location, as explained earlier in the straight channel case, could be a result of

evaluating one of the constants in Eq. (7.22) from experimental values at a specific

streamwise location.

9.3. Negative Pressure Gradient, Curved Channel

A summary of the comparison of theoretical predictions and experimental

measurements for the case of flow under the influence of curvature and negative pressure

gradient is shown in Figs. 32-43. Even in this case, the validation of the dimensionless

wake velocity defect function, _1 -- e-;' is evident, with excellent matching of results

(Figs. 32 and 33). The mean longitudinal velocity profiles (Figs. 34 and 35) show perfect

agreement up to a location of x/d = 215. Beyond this location, there is some deviation
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between the theory and experimental results for some x/d. This deviation is a reflection

of the deviation in Upo provided from experiments (shown by symbols) and the actual Upo

implemented into theory (shown by solid line) through a power fit (Fig. 11). The given

Upo (shown by symbols) cannot be directly implemented because it is necessary to

evaluate _Up/_ from the differentiation of the fit that has been put through given Upo.

Unlike the zero pressure gradient case, the mean lateral velocity prof'tles (Figs. 36 and

37) show reasonable agreement between theory and experiment. Except for a small

deviation at the edges for lower x/d, the theory generally holds good. Figures 38 and 39

show the total impulse distribution, while Figs. 40 and 41 show the partial impulse

distribution for different locations downstream of the wake generating body. It is obvious

from Figs. 42 and 43 that the core of the wake region (-0.75< _ <0.75), with respect to

Reynolds shear stress, is predicted quite well by the theory. But there is a considerable

amount of deviation outside this region, i.e. near the edges. This deviation is a

contribution from the highly over-predicted total impulse and the slightly over-predicted

partial impulse, because shear slress is calculated from their difference. This over-

prediction is due to the slope of the plotted characteristics, which is sensitive to the

distribution of OUp/O_, which in turn is representative of the pressure gradient present

in the channel. Had the pressure distribution been measured rather than calculated from

a power fit through given Upo, much better agreement might have been obtained. The

value of the constant in the shear stress expression has been evaluated from experiments

and is presented in Table 2 (Appendix).

9.4. Positive Pressure Gradient, Curved Channel

The results of the comparison of theoretical and experimental values for positive

pressure gradient in a curved channel for different wake characteristics is shown in Figs.

44-55. Excellent agreement was found between theory and experiment in the

dimensionless wake velocity defect function distribution (Figs. 44 and 45). Reasonably
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better match of the theory with the experiment is apparent in mean longitudinal velocity

profiles (Figs. 46 and 47). Theory has been able to predict the mean lateral velocity

(Figs. 48 and 49) quite well up to a location of x/d = 345, except for small deviations

at the edges. A comparison of Reynolds shear stress distributions is presented in Figs.

54 and 55. The evaluated constant of integration in the shear stress expression is

presented in Table 3 (Appendix). Reasonable agreement is evident up to an x/d of 157,

beyond which the deviation at the edges becomes more and more apparent with

increasing x/d. As discussed earlier in the case of negative pressure gradient, the core of

the wake region is well predicted, while deviation at the edges coming from over-

predicted total impulse and partial impulse distributions has been attributed to the lack

of pressure distribution.

9.5. Mild Pressure Gradient, Mild Curvature

Discussion of the comparison of theory with the experimental measurements of

Nakayama (1987), available from literature, is presented in this section. Nakayama

studied the influence of mild curvature and mild pressure gradient on fully developed

two-dimensional turbulent wakes deflected by an airfoil-like thin plate placed at small

angles in the external flow. A wire of diameter 1.6 mm was used as a wake generator

and the deflector plate was placed below the wake at two angles, + 7 degrees. The flow

when the angle of attack of the deflector is + 7 degrees was referred to as Flow A and

that corresponding to - 7 degrees was Flow B. The free-stream velocity U was held

constant within 1% of 15 m/sec. Measurements of mean longitudinal, lateral velocities,

wake velocity defect and Reynolds shear stress for Flow A were compared with theory.

Information about Upo and [_,_ necessary to implement the theory are calculated and

presented in Table 4 (Appendix) and also shown in Fig. 56, based on the information

provided in his paper.

The results of comparison for different wake characteristics are shown in Figs.
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57 and 58. From Fig. 57(a), it is evident that the wake velocity defect is excellently

predicted, as has been the case so far for all the cases compared. Figure 57(b) compares

mean longitudinal velocity, nondimensionalized with free-stream velocity (U_). Theory

is in excellent agreement with the measurements at all streamwise locations. Thus the

approximation of potential flow velocity in the vicinity of the wake, i.e. U = Uvo(1 -._.)

is valid while the applicability of the expression for wake velocity defect, ¢PI = e -;2, has

already been confirmed. The comparison of mean lateral velocity is presented in Fig.

58(a). Initially, there is overprediction up to a x/d of 400, beyond which there is

reasonably good agreement between theory and experiment. The mismatch could be due

to the nonavailability of pressure distribution. Also, the flow is external with one end

open to atmospheric pressure and other end under the influence of a mild pressure

gradient. From the mean longitudinal velocity distribution, it is also evident that the flow

initially decelerates up to a x/d of 400, beyond which it accelerates. Thus, information

regarding the pressure distribution is critical. The comparison between theoretical and

experimental Reynolds shear stress distributions is presented in Fig. 58(b). Theory

overpredicts the measurements in all cases, though the general tendency is correct. Since

the enforced pressure gradient is mild, implementing the expression from a zero pressure

gradient case for Reynolds shear stress is justifiable for comparison. It can be concluded

from these comparisons that the theory reasonably predicts the situation under

investigation.

9.6. Periodic Umteady Wake Development in Curved Channel at Zero Pressure

Gradient

In turbomachinery, wake development is associated with unsteadiness due to the

mutual interaction between stator and rotor. So, the study of wake development under

such conditions is of practical interest. This section deals with the discussion of the
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theoretical comparison with experimental measurements made available from the

Turbomachinery Performance Laboratory at Texas A&M University, where periodic

unsteady wakes generated by the cylinders of a rotating wake generator at zero pressure

gradient are investigated (John, 1993). The wake generator has three cylinders of 1.984

mm diameter each, fixed at an angle of 120 ° to each other. The instantaneous velocity

components obtained in probe coordinates are reduced by phase-averaging. The temporal

development of periodic unsteady wake in an absolute frame of reference has been

transformed to a curvilinear spatial coordinate system relative to the moving cylinder.

Thus, the expressions derived in Chapter 7 for steady wake flow under zero streamwise

pressure gradient can be directly used to compare with the experimental data available

for the periodic unsteady case.

Figures 59 through 61 show the results of a comparison of the theory with the

experimental measurements. All quantities presented are in a relative frame of reference.

Figures 59(a,b) and 60(a) show the values of wake width, maximum wake velocity

defect, and potential flow velocity at the wake center as a function of streamwise

distance from the wake generating body. Figure 60(b) shows the comparison of a

nondimensional wake velocity defect. The validity of the expression for qh,, i.e.

_- _-
qhr ' -- e , _,

UI,,_ b

is quite evident considering the excellent match between theory and measurements. The

additional subscript "r" denotes that the quantities are in a relative frame of reference.

Thus, the similarity of wake velocity defect profiles has been established for the present

case as well. The transverse distribution of Reynolds shear stress at different locations

downstream of the wake generating body is shown in Fig. 61. The shear stress is

--2

nondimensionalized with the square of the maximum wake velocity defect, i.e. U_,_. As

discussed earlier, the constant of integration in the expression for shear stress has been
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evaluatedfrom experimentalmeasurements(Table 5, Appendix) correspondingto the

value at _ -- 0. Theory is in good agreementwith the experimentalmeasurementsfor

almostall streamwiselocations,with theasymmetryin theprofilesbeingpredictedquite

well. Thus, theorypredictedperiodic unsteadywake characteristicsquite well.
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10. CONCLUSIONS

The task of predicting the characteristics of two-dimensional turbulent wakes

under turbomachinery flow conditions has been undertaken. Comprehensive comparisons

of theory with experimental measurements for different locations downstream of a wake

generating body have been carried out. The following conclusions can be drawn from the

present investigation:

1. The dimensionless wake velocity defect function, tpl = e , as derived in Chapter 7.2

for straight channel with zero streamwise pressure gradient, is valid for the wake flow

under the influence of both the curvature and pressure gradients. Thus, the assumption

of similarity in wake velocity defect profiles has been verified.

2. Wake characteristics for zero pressure gradient with and without the presence of

strearialine curvature are excellently predicted by the theory.

3. The method presented for the calculation of the mean longitudinal turbulent fluctuation

impulse, based on Prandtl's theory, for the case of zero streamwise pressure gradient is

reasonably valid.

4. The core of the wake region in Reynolds shear stress proftles is well predicted for

both the cases of positive and negative pressure gradients.

5. The comparison of theory with the experimental measurements of Nakayama (1987)

also verify the general applicability of the developed theory.

6. Excellent match of theory with measurements for periodic unsteady wake development

in a curved channel with zero streamwise pressure gradient also verifies the general

validity of the theory.

Much better agreement between theory and experiment for wake flow under the

influence of a pressure gradient would have been possible had the pressure distribution

been measured. In theory, OU_,/O{x, representative of the pressure gradient, has been

implemented by differentiating the expression resulting from the power fit through the



116

given Upo.In turn, Upo has been calculated from a polynomial fit through the potential

flow region of mean longitudinal velocity distribution. Thus, there is scope to introduce

inaccuracy in obtaining a distribution for pressure gradient. Also, the pressure gradient

enforced in the channel is quite large. Better results could have been possible had the

pressure gradient been mild. One of the basic assumptions of two dimensionality of the

flow within the curved channel may not have been preserved in actual practice. In

turbomachinery, the near wake region (rdd<80) is of practical interest, and the

contributions from the present investigation are useful.
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APPENDIX A

EXPERIMENTAL DATA IMPLEMENTED IN THEORY

Table 1: Data from Experiments for Zero Pressure Gradient, Curved Channel

x/d b (ram) Upo (m/s) /-_1,_ (m/s) R (mm) dU_2,,,

34 7.44 20.02 2.598 3360 0.01323

65 11.27 20.07 1.734 -4710 0.00367

96 13.78 20.12 1.392 -1424 -0.00648

126 16.76 20.51 1.217 -875 -0.00700

157 19.88 20.57 1.084 -672 -0.02350

187 22.88 20.60 0.905 -589 -0.02000

218 26.13 20.38 0.846 -573 -0.04745

248 27.34 18.77 0.686 -603 -0.04745

278 33.88 19.11 0.611 -673 -0.08146

309 36.92 19.11 0.540 -781 -0.13166

339 33.96 19.49 0.494 -924 -0.20737

370 39.87 20.03 0.491 -1092 -0.25122

400 45.91 19.59 0.469 -1279 -0.24552

431 49.21 20.26 0.445 -1489 -0.30556

461 47.70 20.31 0.453 -1704 -0.33518
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Table 2: Data from Experiments for Negative Pressure Gradient, Curved Channel

x/d b (mm) Upo(m/s) R (ram)

34 6.92 2.710 20.23 -2632 - 1.67e-2

65 10.76 1.826 20.78 -887 - 1.59e-2

96 12.15 1.447 21.44 -728 - 1.5 le-2

14.38

17.16

126

156

185

1.173

0.946

0.795

0.733

22.15

215

22.82

23.56

24.17

18.22

20.79

-738

-787

-805

-776

-4.88e-3

388 28.78

-4.39e-2

-9.47e-2

-9.34e-2

Diameter of wake generating body, d = 1.984 mm

244 22.40 0.648 23.78 -702 -0.1241

273 24.04 0.588 24.63 -654 -0.1588

302 24.18 0.538 25.37 -646 -0.2118

331 24.22 0.522 26.06 -684 -0.2051

360 26.30 0.471 26.65 -770 -0.2789

0.435 27.29 -896 -0.3233
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Table 3: Data from Experiments for Positive Pressure Gradient, Curved Channel

x/d b (mm) Upo(m/s) R (ram)

34 7.06 19.27 2.793 - 1815 1.52e-2

65 10.56 19.17 1.952 - 1461 2.28e-3

96 13.30 18.85 1.550 - 1179 -7.7 le-3

126 16.13 18.00 1.311 -958 - 1.14e-2

157 18.97 17.76 1.216 -806 5.95e-3

188 22.77 17.68 1.075 -707 -9.44e-3

219 25.00 17.37 0.954 -656 -2.5 le-2

250 29.76 16.94 0.898 -647 -3.15e-2

282 33.17 17.02 0.780 -673 -9.16e-2

313

345

35.28

41.37

43.03

48.58

51.27

56.68

377

16.63

16.33

16.34

15.61

15.66

15.64

408

0.778

0.716

0.698

0.649

0.609

0.578

440

-728 -8.20e-2

-805 -0.1241

-897 -0.1460

-1002 -0.1932

- 1106 -0.2647

-1207474 -0.3301

Diameter of wake generating body, d = 1.984 mm
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Table 4: Data from Experiments of Nakayama (1987)

x/d Upo(m/s) yo(mm) R (ram)

300 0.9053084 14.9862 -1.60 5882

350 0.9175267 14.5159 -6.30 2500

400 0.8184329 13.1768 -10.00 -465

450 0.8111683 13.8188 -6.40 -2714

1.00500 0.8212935 14.5654 3571

Diameter of wake generating body, d = 1.6 mm; Free-stream velocity = 15 m/s

Table 5: Data from Experiments for Umteady Wake under Zero Pressure Gradient,
Curved Channel

x/d b/d U_ (m/s)

40 3.70 2.732 22.255 0.008

103 5.93 1.693 22.912 -0.020

166 7.74 1.351 23.304 -0.040

228 9.16 1.226 23.862 -0.046

1.16010.89288 23.747

Diameter of wake generating body, d = 1.984 mm

-0.100
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APPENDIX B: DATA GENERATION PROGRAMS

Programs _r Zero Pressure Gradien_ Curved Channel

c PROGRAM FOR THE LONGITUDINAL MEAN VELOCITY (U)

c DISTRIBUTION

c opening an output file

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

open(5,file=FILENAME,status='new')

d=1.984

c reads in the input

write(*,*)'enter x/d:'

read(*,*)xd

c

write(*,*)'enter U_IO0:'

read(*,*)up0

c calculates the wake width, b

if(xd .it. 100)then

b = 0.39112*d*((xd)**(0.598563))/l.772

db = 0.39112"0.598563"((xd)**(0.598563-i))/1.772

else

b = 0.12923*d*((xd)**0.842548)/l.772

db = 0.12923"0.842548"((xd)**(0.842548-I))/1.772

endif

c calculates the maximum wake velocity defect, u_im

if(xd .it. 100)then

ulm = 21.74097"(xd**-0.603475)

else

ulm = 1.447473 + 3.0899e-3*xd - 6.0324e-5*(xd**2)

* + 1.9791e-7*(xd**3) -

* 2.3941e-10*(xd**4)

* + 8.7410e-14*(xd**5)

endif

c calculates the radius of curvature

r = - 1699.27 + 13.2273"xd - 7.10465e-2*(xd**2)

* + 1.75099e-4*(xd**3) - 1.42756e-7*(xd**4)

* - 6.04952e-ll*(xd**5)

c

do y = -125,125,2.5

z = y/b

u = up0*(l-z*b/r) - ulm*exp(-z*z)

write(5,*)y,u
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enddo

stop

end

C PROGRAM FOR THE LATERAL VELOCITY (V) DISTRIBUTION

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

OPEN(5,FILE=FILENAME,STATUS='NEW')

d=l. 984

call

call

call

call

input(xd, r)

wkwidth(xd, d,b,db)

uulm(xd, d,a,ulm, up0)

output(xd, d,r,b,db,a,ulm,up0)

do x = -2.0,2.0,0.05

z = x*1.772

g = exp(-z*z)

t = r/(r+b*z)

c nondimensional (V/U_Im)

y = -t*db*z*g

write(5,*)x,y

enddo

stop

end
***********************************************************

subroutine input(xd, r)

write(*,*) 'enter x/d'

read(*,*)xd
r = - 1699.27 + 13.2273"xd - 7.10465e-2*(xd**2)

* + 1.75099e-4*(xd**3) - 1.42756e-7*(xd**4)

* - 6.04952e-ll*(xd**5)

return

end
***********************************************************

subroutine wkwidth(xd,d,b,db)

if(xd .it. 100)then

b = 0.39112*d*((xd)**(0.598563))/l.772
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db = 0.39112"0.598563"((xd)**(0.598563-i))/1.772

else

b = 0.12923*d*((xd)**0.842548)/l.772

db = 0.12923"0.842548"((xd)**(0.842548-i))/1.772

endif

return

end

subroutine uulm(xd,d,a,ulm, up0)
WWWW*WWWWW*WWW*WWWWW*W*W*WW*WWWW*WWWW**WWWWW*WWWWWWWWWWWWWW

write(*,*)'enter U_p0:'

read (*, * )up0

c

if(xd .it. 100)then

ulm = 21.74097"(xd**-0.603475)

else

ulm = 1.447473 + 3.0899e-3*xd - 6.0324e-5*(xd**2)

* + 1.9791e-7*(xd**3) -

* 2.3941e-10*(xd**4)

* + 8.7410e-14*(xd**5)

endif

a = up0/ulm

return

end
***********************************************************

subroutine output(xd, d,r,b,db, a,ulm, up0)
***********************************************************

print*,'x/d=',xd,' d=',d,' r=',r

print*,'b=',b*l.772,' db=',db

print*,'b/d=',b*l.772/d

print*,'u/u_im=',a,' ulm=',ulm,' up0=',up0

return

end

***********************************************************

C PROGRAM FOR REYNOLDS SHEAR STRESS

character *64 FILENAME

1 format (A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

OPEN(5,FILE=FILENAME,STATUS='NEW')
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d=1.984

write(*,*)'enter value of const at z=O:'

read(*,*)const

call

call

call

call

input(xd, r)

wkwidth(xd,d,b, db)

uulm(xd,d,a,ulm, upO)

output(xd,d,r,b,db, a,ulm, upO)

do x = -2.0,2.0,0.05

z = x*1.772

g = exp(-z*z)

t = r/(r+b*z)

term = t*a*db*(-z*g+b*g/r*(l.+z*z))+t*db*z*g*(l-g)

y = term+const

write(5,*)x,y

enddo

stop

end
***********************************************************

subroutine input(xd, r)
***********************************************************

write(*,*)'enter x/d'

read(*,*)xd

r = - 1699.27 + 13.2273"xd - 7.10465e-2*(xd**2)

* + 1.75099e-4*(xd**3) - 1.42756e-7*(xd**4)

* - 6.04952e-ll*(xd**5)

return

end
***********************************************************

subroutine wkwidth (xd, d, b, db)
***********************************************************

if(xd .it. lO0)then

b = 0.39112*d*((xd)**(0.598563))/l.772

db = 0.39112"0.598563"((xd)**(0.598563-i))/1.772

else

b = O.12923*d*((xd)**0.842548)/1.772

db = 0.12923"0.842548"((xd)**(0.842548-1))/1-772

endif
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write(*,*)'enter up0:'

read(*,*)up0

C

C

if(xd

ulm

else

ulm

endif

.it. 100)then

= 21.74097"(xd**-0.603475)

1.447473 + 3.0899e-3*xd -

+ 1.9791e-7*(xd**3)

2.3941e-10*(xd**4)

+ 8.7410e-14*(xd**5)

a = up0/ulm

6.0324e-5*(xd**2)

return

end

subroutine output(xd,d,r,b,db, a,ulm, up0)

print*,'x/d=',xd,' d=',d,' r=',r

print*,'b=',b*l.772,' db=',db

print*,'b/d=',b*l.772/d

print*, 'u/u_im=',a,' ulm=',ulm,' up0=',up0

return

end

c PROGRAM FOR THE LONGITUDINAL FLUCTUATION IMPULSE
***********************************************************

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

open(5,file=FILENAME,status='new')

d=1.984

write(*,*)'enter x/d:'

read(*,*)xd

c calculation of radius of curvature

r = - 1699.27 + 13.2273"xd - 7.10465e-2*(xd**2)

* + 1.75099e-4*(xd**3) - 1.42756e-7*(xd**4)

* - 6.04952e-ll*(xd**5)

c calculation of wake width

if(xd .it. 100)then

b = 0.39112*d*((xd)**(0.598563))/l.772
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c

c

db = 0.39112"0.598563"((xd)**(0.598563-i))/1.772

else

b = 0.12923*d*((xd)**0.842548)/l.772

db = 0.12923"0.842548"((xd)**(0.842548-i))/1.772

endif

a2 = 1.50

do x = -2,2,0.05

z = x*1.772

t = r/(r+z*b)

psi = t*(l.0+b/r*z+a2*z*z)*exp(-z*z)

write(5,*)x,psi

enddo

Programs for Positive Pressure GratHen_ Curved Channel

c PROGRAM FOR THE LONGITUDINAL MEAN VELOCITY (U)

c DISTRIBUTION

c opening an output file

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

open(5,file=FILENAME, status='new')

c

c

c

d=1.984

reads in the input

write(*,*)'enter x/d:'

read(*,*)xd

if(xd .it. 100)then

up0 = 20.71391"(xd**-0.019894)

dup0 = 20.71391*-0.019894*(xd**-l.019894)/d

else

up0 = 32.21922"(xd**-0.I16591)

dup0 = 32.21922*-0.116591*(xd**-l.l16591)/d

endif

calculates the wake width

if(xd .it. 100)then

b = 0.412923*d*(xd**0.611281)/l.772

db = 0.412923"0.611281"(xd**(0.611281-i))/1.772
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else

b = 0.076865*d*(xd**0.955126)/l.772

db = 0.076865-0.955126"(xd**(0.955126-I))/1.772

endif

c calculates the maximum wake velocity defect

if(xd .it. 100)then

ulm = 20.59"(xd**-0.565849)

dulm = 20.59*-0.565849*(xd**-l.565849)/d

else

ulm = 28.9309"(xd**-0.632416)

dulm = 28.9309*-0.632416*(xd**-l.632416)/d

endif

c calculated the radius of curvature

r = -3377.81 + 53.29529"xd - 0.435468"(xd*'2)

* + 1.7222e-3*(xd**3) - 3.22e-6*(xd**4)

* + 2.2493e-9*(xd**5)

c

do y = -125,125,2.5

z = y/b

u = up0*(l-z*b/r) -

write (5, *)y,u

enddo

ulm*exp(-z*z)

stop
end

C PROGRAM FOR THE LATERAL VELOCITY (V) DISTRIBUTION
***********************************************************

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

OPEN(5,FILE=FILENAME,STATUS='NEW')

d = 1.984

pi = 4.0*atan(l.0)

sfac = sqrt(pi)/2.0

call

call

call

call

input(xd, r)

wkwidth(xd, d,b,db)

uulm(xd, d,b,a,ulm,up0,dup0,dulm)

output(xd, d,r,b,db,a,ulm, up0,dup0,dulm)

do x = -2.0,2.0,0.05

z = x*1.772
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c

g = exp(-z*z)
t = r/(r+b*z)

vr = z*b/r

nondimensional (V/U_im)

y = -t*b/ulm*dupO*z*(l.-vr/2) - t*db*(z*g-sfac*erf(z))
* + t*b/ulm*dulm*sfac*erf(z)

write(5,*)x,y
enddo

stop
end

***********************************************************

subroutine input(xd, r)
***********************************************************

write(*,*)'enter x/d'

read(*,*)xd

c
r = -3377.81 + 53.29529"xd - 0.435468"(xd*'2)

* + 1.7222e-3*(xd**3) - 3.22e-6*(xd**4)
* + 2.2493e-9*(xd**5)

return

end
***********************************************************

subroutine wkwidth(xd, d,b, db)

if(xd .it. lO0)then

b = 0.412923*d*(xd**0.611281)/l.772

db = 0.412923"0.611281"(xd**(0.611281-i))/1.772

else

b = O.076865*d*(xd**0.955126)/l.772

db = 0.076865"0.955126"(xd**(0.955126-i))/1.772
endif

return

end
***********************************************************

subroutine uulm(xd, d,b,a,ulm, upO,dupO,dulm)
***********************************************************

if(xd .it. lO0)then

upO = 20.71391"(xd**-0.019894)

dupO = 20.71391*-O.O19894*(xd**-l. O19894)/d
else

upO = 32.21922"(xd**-0.i16591)
dupO = 32.21922*-O.l16591*(xd**-l.l16591)/d

endif

c

if(xd .it. lO0)then
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c

ulm = 20.59"(xd**-0.565849)

dulm = 20.59*-0.565849*(xd**-l.565849)/d

else

ulm = 28.9309"(xd**-0.632416)

dulm = 28.9309*-0.632416*(xd**-l.632416)/d

endif

a = up0/ulm

return

end

subroutine output(xd, d,r,b,db,a,ulm, up0,dup0,dulm)

print*,'x/d=',xd,' d=',d,' r=',r

print*,'b=',b*l.772,' db=',db

print*,' dup0=',dup0,' b/d=',b*l.772/d

print*,'u/u_im=',a,' ulm=',ulm,' up0=',up0

print*,'dulm=',dulm

return

end

c PROGRAM FOR REYNOLDS SHEAR STRESS

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

OPEN(5,FILE=FILENAME,STATUS='NEW')

d = 1.984

pi = 4.0*atan(l.0)

sfac = sqrt(pi)/2.0

c

write(*,*)'enter value of shear stress at z=0:'

read(*,*)uvatz0

call

call

call

call

input(xd, r)

wkwidth(xd,d,b, db)

uulm(xd,d,b,a,ulm, up0,dup0,dulm)

output(xd, d,r,b, db, a,ulm, up0,dup0,dulm)

do x = -2.0,2.0,0.05

z = x*l. 772

g = exp(-z*z)
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c

t = r/(r+b*z)
vr = z*b/r

terml

term2

term3

term4

term5

term6

const

= -t*upO/(ulm**2)*dupO*b*z*vr/2.*(l.-vr/3.)

= -t*upO/ulm*db*(z*g-b*g/r*(2.+z*z)

- sfac*erf(z)*(l.+vr))

= t*db*(z*g*(l.-g)-sfac*erf(z)*(l.-g))

= t*upO/(ulm**2)*dulm*b*

(b*g/r+sfac*erf(z)*(l.+vr))

= t*b/ulm*dupO*(2.*sfac*erf(z)

+ b*g/r*(l.+O.5*z*z)-z*g)

= -t*b/ulm*dulm*(sfac*erf(z)*(2.-g))

= uvatzO - 2.*a*db*b/r - upO/(ulm**2)*dulm*b*b/r

- b/ulm*dupO*b/r

y = terml+term2+term3+term4+term5+term6+const

write(5,*)x,y

enddo

write(5,*)'const=',const

stop

end
***********************************************************

subroutine input(xd, r)
***********************************************************

write(*,*)'enter x/d'

read(*, *) xd

c

r = -3377.81 + 53.29529"xd - 0.435468"(xd*'2)

* + 1.7222e-3*(xd**3) - 3.22e-6*(xd**4)

* + 2.2493e-9*(xd**5)

return

end

subroutine wkwidth (xd, d, b, db)
***********************************************************

if(xd .it. lO0)then

b = 0.412923*d*(xd**0.611281)/l.772

db = 0.412923"0.611281"(xd**(0.611281-i))/1.772

else

b = O.076865*d*(xd**0.955126)/l.772

db = 0.076865"0.955126"(xd**(0.955126-i))/1.772

endif
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subroutine uulm(xd, d,b,a,ulm, up0,dup0,dulm)

if(xd .it. 100)then

up0 = 20.71391"(xd**-0.019894)

dup0 = 20.71391*-0.019894*(xd**-l.019894)/d

else

up0 = 32.21922"(xd**-0.i16591)

dup0 = 32.21922*-0.116591*(xd**-l.l16591)/d

endif

c

c

if(xd .it. 100)then

ulm = 20.59"(xd**-0.565849)

dulm = 20.59*-0.565849*(xd**-l.565849)/d

else

ulm = 28.9309"(xd**-0.632416)

dulm = 28.9309*-0.632416*(xd**-l.632416)/d

endif

a = up0/ulm

return

end

subroutine output(xd, d,r,b, clb, a,ulm, up0,dup0,dulm)

print*,'x/d=',xd,' d=',d,' r=',r

print*,'b=',b*l.772,' db=',db

print*,' dup0=',dup0,' b/d=',b*l.772/d

print*,'u/u_im=',a,' ulm=',ulm,' up0=',up0

print*,'dulm=',dulm

return

end

Programs _r Negative Prmsure Gradien_ Curved Channel

c PROGRAM FOR THE LONGITUDINAL MEAN VELOCITY (U)

c DISTRIBUTION
***********************************************************

c opening an output file

character *64 FILENAME

1 format(A64)

write(*,*)'enter the output filename:'

read(*,I)FILENAME

open(5,file=FILENAME,status='new')
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C

C

d=1.984

reads in the input

write(*,*)'enter
read(*,*)xd

x/d:'

if(xd .it. 100)then

up0 = 16.65487"(xd**0.054489)
else

up0 = 9.301764"(xd**0.1769854)
endif

c calculates the wake width
b = 0.476759*d*(xd**0.569376)/1.772

db = 0.476759-0.569376"(xd**(0.569376-i))/1.772

c calculates the maximum wake velocity defect

if(xd .it. 100)then
ulm = 22.8643"(xd**-0.604982)

dulm = -22.8643*0.604982*(xd**(-1.604982))/d

else
ulm = 69.42161"(xd**-0.8492)

dulm = -69.42161*0.8492*(xd**-l.8492)/d

endif

c calculated the radius of curvature
r = -0.7011e+3 - 0.30234e+l*xd + 0.22708e-l*(xd**2)

* - 0.41328e-4*(xd**3)

C

do y = -125,125,2.5

z = y/b
u = up0*(l-z*b/r) -

write(5,*)y,u
enddo

ulm*exp(-z*z)

stop
end

***********************************************************

C PROGRAM FOR THE LATERAL VELOCITY (V) DISTRIBUTION
***********************************************************

character *64 FILENAME

1 format(A64)

write (*, * )'enter the output filename :'

read(*,I)FILENAME

OPEN(5,FILE=FILENAME, STATUS='NEW ')

d = i. 984

pi = 4.0*atan(l.0)

sfac = sqrt(pi)/2.0
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call

call

call

call

input(xd, r)

wkwidth(xd, d,b,db)

uulm(xd, d,b,a,ulm, upO,dupO,dulm)

output(xd, d,r,b, db, a,ulm, upO,dupO,dulm)

c

do x = -2.0,2.0,0.05

z = x*1.772

g = exp(-z*z)

t = r/(r+b*z)

vr = z*b/r

nondimensional (V/U_Im)

y = -t*b/ulm*dupO*z*(l.-vr/2) - t*db*(z*g-sfac*erf(z))

* + t*b/ulm*dulm*sfac*erf(z)

write(5,*)x,y

enddo

stop
end

subroutine input(xd, r)
..**.WWW*WW*W*WWWWW*WWWWWW**WW*WW**WW*WW**WWW*WW***********

write(*,*)'enter x/d'

read(*, *)xd

c
r = -0.7011e+3 - 0.30234e+l*xd + 0.22708e-l*(xd**2)

* - 0.41328e-4" (xd**3)

return

end
***********************************************************

subroutine wkwidth(xd, d,b,db)
***********************************************************

b = 0.476759*d*(xd**0.569376)/l.772

db = 0.476759"0.569376"(xd**(0.569376-i))/1.772

return

end

subroutine uulm(xd, d,b,a,ulm, upO,dupO,dulm)

if(xd .it. lO0)then

upO = 16.65487"(xd**0.054489)

dupO = 16.65487*O.054489*(xd**(O.O54489-1))/d

else

upO = 9.301764"(xd**0.1769854)

dupO = 9.301764*O.1769854*(xd**(O.1769854-1))/d

endif
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c

c

if(xd.lt.100)then

ulm = 22.8643"(xd**-0.604982)

dulm = -22.8643*0.604982*(xd**(-l.604982))/d

else

ulm = 69.42161"(xd**-0.8492)

dulm = -69.42161*0.8492*(xd**-l.8492)/d

endif

a = up0/ulm

return

end
***********************************************************

subroutine output(xd, d,r,b,db,a,ulm, up0,dup0,dulm)
***********************************************************

print*,'x/d=',xd,' d=',d,' r=',r

print*,'b=',b*l.772,' db=',db

print*,' dup0=',dup0,' b/d=',b*l.772/d

print*,'u/u_im=',a,' ulm=',ulm,' up0=',up0

print*,'dulm=',dulm

OPEN(5,FILE=FILENAME,STATUS='NEW')

d = 1.984

pi = 4.0*atan(l.0)

sfac = sqrt(pi)/2.0

c

c

write(*,*)'enter value of shear stress at z=0:'

read(*,*)uvatz0

call

call

call

call

input(xd, r)

wkwidth(xd, d,b,db)

uulm(xd,d,b,a,ulm, up0,dup0,dulm)

output(xd, d,r,b,db, a,ulm, up0,dup0,dulm)

do x = -2.0,2.0,0.05
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z = x*1.772

g = exp(-z*z)

t = r/(r+b*z)

vr = z*b/r

terml =

term2 =

term3 =

term4 =

term5 =

term6 =

const =

-t*upO/(ulm**2)*dupO*b*z*vr/2.*(l.-vr/3.)

-t*upO/ulm*db*(z*g-b*g/r*(2.+z*z)

- sfac*erf(z)*(l.+vr))

t*db*(z*g*(l.-g)-sfac*erf(z)*(l.-g))

t*upO/(ulm**2)*dulm*b*

(b*g/r+sfac*erf(z)*(l.+vr))

t*b/ulm*dupO*(2.*sfac*erf(z)

+ b*g/r*(l.+O.5*z*z)-z*g)

-t*b/ulm*dulm*(sfac*erf(z)*(2.-g))

uvatzO - 2.*a*db*b/r - upO/(ulm**2)*dulm*b*b/r

- b/ulm*dupO*b/r

y = terml+term2+term3+term4+term5+term6+const

write(5,*)x,y

enddo

write(5,*)'const=',const

stop

end
***********************************************************

subroutine input(xd, r)
***********************************************************

write(*,*)'enter x/d'

read(*,*)xd

c

r = -0.7011e+3 - 0.30234e+l*xd + 0.22708e-l*(xd**2)

* - 0.41328e-4*(xd**3)

return

end

subroutine wkwidth(xd, d,b,db)
***********************************************************

b = 0.476759*d*((xd)**(0.569376))/l.772

db = 0.476759"0.569376"((xd)**(0.569376-i))/1.772

return

end

subroutine uulm (xd, d, b, a, ulm, upO, dupO, dulm)

if(xd .it. lO0)then

upO = 16.65487"(xd**0.054489)
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c

dupO = 16.65487*O.054489*(xd**(O.O54489-1))/d

else

upO = 9.301764"(xd**0.1769854)

dupO = 9.301764*O.1769854*(xd**(O.1769854-1))/d

endif

if(xd.lt.lOO)then

ulm = 22.8643"(xd**-0.604982)

dulm = -22.8643*0.604982*(xd**(-l.604982))/d

else

ulm = 69.42161"(xd**-0.8492)

dulm = -69.42161*0.8492*(xd**-l.8492)/d

endif

a = upO/ulm

return

end
***********************************************************

subroutine output(xd,d,r,b,db, a,ulm, upO,dupO,dulm)
***********************************************************

print*,'x/d=',xd,' d=',d,' r=',r

print*, 'b=' ,b*1.772, ' db=' ,db

print*,' dupO=',dupO,' b/d=',b*l.772/d

print*,'u/u_im=',a,' ulm=',ulm,' upO=',upO

print*, 'dulm=', dulm

return

end
***********************************************************
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